jueves, 24 de abril de 2008

ENSAYOS DESTRUCTIVOS


PROCEDIMIENTO
Ingresamos a la dirección
http://www.oni.escuelas.edu.ar/olimpi2000/santa-fe-sur/ensayodemateriales/Ensayos/Index.htm
Luego ingresamos en ensayos y dimos clic en cada tipo de ensayo

TRACCIÓN

Un cuerpo se encuentra sometido a tracción simple cuando sobre sus secciones transversales se le aplican cargas normales uniformemente repartidas y de modo de tender a producir su alargamiento.
Por las condiciones de ensayo, el de tracción estática es el que mejor determina las propiedades mecánicas de los metales, o se a aquella que definen sus características de resistencia y deformabilidad. Permite obtener, bajo un estado simple de tensión, el límite de elasticidad o el que lo reemplace prácticamente, la carga máxima y la consiguiente resistencia estática, en base a cuyos valores se fijan los de las tensiones admisibles o de proyecto (sadm.)y mediante el empleo de medios empíricos se puede conocer, el comportamiento del material sometidos a otro tipo de solicitaciones (fatiga, dureza, etc.).
Cuando la probeta se encuentra bajo un esfuerzo estático de tracción simple a medida que aumenta la carga, se estudia esta en relación con las deformaciones que produce. Estos gráficos, permiten deducir sus puntos y zonas características revisten gran importancia, dicho gráfico se obtiene directamente de la máquina.
Un caso típico es el diagrama que nos presenta el gráfico de un acero dúctil indicado en la figura, en donde el eje de las ordenadas corresponde a las cargas y el de la abscisas al de las deformaciones longitudinales o alargamientos en milímetros. 1) Periodo elástico
Se observa en el diagrama que el comienzo, desde el punto O hasta el A, esta representado por una recta que nos pone de manifiesto la proporcionalidad entre los alargamientos y las cargas que lo producen (Ley de Hooke). Dentro de este periodo y proporcionalmente hasta el punto A, los aceros presentan la particularidad de que la barra retoma su longitud inicial al cesar la aplicación de la carga, por lo que recibe indistintamente el nombre de periodo de proporcionalidad o elástico.
2) Zona de alargamiento seudoelástico
Para el limite proporcional se presentan un pequeño tramo ligeramente curvo AB, que puede confundirse prácticamente con la recta inicial, en el que los alargamientos elásticos se les suma una muy pequeña deformación que presenta registro no lineal en el diagrama de ensayo. La deformación experimentada desde el limite proporcional al B no solo alcanza a valores muy largos, si no que fundamentalmente es recuperable en el tiempo, por lo que a este punto del diagrama se lo denomina limite elástico o aparente o superior de fluencia.
3) Zona de fluencia o escurrimiento
El punto B marca el inicio de oscilaciones o pequeños avances y retrocesos de la carga con relativa importante deformación permanente del material. Las oscilaciones en este periodo denotan que la fluencia no se produce simultanea mente en todo el material, por lo que las cargas se incrementan en forma alternada, fenómeno que se repite hasta el escurrimiento es total y nos permite distinguir los “limites superiores de fluencia”. El limite elástico aparente puede alcanzar valores de hasta el 10 al 15 % mayores que el limite final de fluencia.
4) Zona de alargamiento homogéneo en toda la probeta.
Más allá del punto final de fluencia C, las cargas vuelven a incrementarse y los alargamientos se hacen más notables, es decir que ingresa en el período de las grandes deformaciones, las que son uniformes en todas las probetas hasta llegar a D, por disminuir, en igual valor en toda la longitud del material, la dimensión lineal transversal. El final de período de alargamiento homogéneo queda determinado por la carga máxima, a partir de la cual la deformación se localiza en una determinada zona de la probeta, provocando un estrechamiento de las secciones que la llevan a la rotura, al período DE se lo denomina de estricción. En la zona plástica se produce, por efecto de la deformación, un proceso de endurecimiento, conocido con el nombre de “ acritud “, que hace que al alcanzar el esfuerzo la resistencia del metal, éste al deformarse adquiere más capacidad de carga, lo que se manifiesta en el gráfico hasta el punto D.
5) Zona de estricción
En el período de estricción, la acritud, si bien subsiste, no puede compensar la rápida disminución de algunas secciones transversales, produciéndose un descenso de la carga hasta la fractura.

PROBETAS PARA TRACCION
Las probetas para los ensayos de tracción pueden ser: industriales o calibradas; estas últimas, se emplean en experiencias más rigurosas y adoptan formas perfectamente cilíndricas o prismáticas, con extremos ensanchados, no solo para facilitar su sujeción en la máquina de ensayo, sino para asegurar la rotura dentro del largo calibrado de menor sección; en la cual se marcan los denominados “Puntos fijos de referencia” a una distancia inicial preestablecida (lo), que permitirá después de la fractura, juntando los trozos, determinar la longitud final entre ellos (L).
Estos hechos han motivado la normalización de la longitud inicial, estipulándose que dos o más ensayos pueden compararse en sus alargamientos, si las probetas son geométricamente semejantes, lo que se logra cuando lo es proporcional al diámetro o
raíz cuadrada de la sección. O sea que los ensayos sobre probetas distintas resultan comparables si se cumple que la ley de semejanza:

El gráfico de la probeta de tracción a utilizar es según la norma IRAM

MAQUINA DE ENSAYO
La siguiente es una foto de la maquina utilizada para realizar el ensayo de tracción, en la cual vemos el dial que nos marca la cargas , el diagramador y el sistema donde se realiza el ensayo con la probeta colocada.
MODO Y TIEMPO DE APLICACION DE LAS CARGAS
La carga debe aplicarse de tal manera que el esfuerzo resulte uniformemente destruido sobre la sección transversal del material.
Tratándose de ensayos estáticos el incremento de carga se efectúa en forma muy lenta, para evitar los efectos de las fuerzas de inercia, velocidad que se fija según las normas y materiales, adoptándose generalmente una variación de 0,1 Kgf/mm² y por segundo aproximadamente hasta alcanzar el limite de fluencia, a partir del cual puede llegarse como máximo a 50 Kgf/mm² por minuto.
Resulta de gran importancia la velocidad de la aplicación de la carga de ensayo, pues su incremento produce un retraso en la aparición de las deformaciones plásticas y un aumento de la resistencia del material. Si las cargas se aplican en forma extremadamente lentas se obtiene una disminución del limite de fluencia y un aumento de la resistencia, aunque a expensas de la ductilidad, que disminuye considerablemente.

DETERMINACIONES A EFECTUAR EN UN ENSAYO DE TRACCION ESTATICO
El ensayo de tracción es el que mejor define las “propiedades mecánicas” de los metales sometidos a la acción de cargas estáticas.
Estas propiedades quedan determinadas si se calcula la aptitud del material a resistir las cargas que le pueden ser aplicadas (propiedades de resistencia) y las deformaciones que experimente por la acción de éstas (propiedades de deformaciones).
Propiedades Mecánicas De Resistencia:
Del gráfico de ensayo pueden determinarse los valores de las cargas a los limites proporcionales y de fluencia y la que corresponde a la máxima, que permiten calcular las tensiones convencionales que fijan las propiedades de resistencia.
Resistencia estática a la tracción
Propiedades Mecánicas De Deformabilidad:
Alargamiento De Rotura: si antes de comenzar las experiencias se marcan sobre la probeta, en una generatriz o recta, los puntos de referencia de acuerdo con la norma aplicada (Lo) después del ensayo, juntando los trozos, es factible medir la distancia que los separa (L), de modo que el “alargamiento total” resulta:


PLEGADO

El plegado a temperatura ambiente es un ensayo tecnológico derivado del de flexión, se realiza para determinar la ductilidad de los materiales metálicos (de él no se obtiene ningú n valor específico).
Este ensayo es solicitado por las especificaciones en la recepción de aceros en barras y perfiles, para la comprobación de la tenacidad de los mismos y después de haber sido sometido al tratamiento térmico de recocido. El material se coloca entre los soportes cilíndricos, aplicando la carga lentamente hasta obtener el ángulo de plegado especificado para el mismo, o bien cuando se observa la aparición de las primeras fisuras en la cara inferior o la sometida a tracción.


La luz entre los bordes de los apoyos se toma aproximadamente igual al diámetro del elemento transmisor del esfuerzo, más tres veces el espesor del material.
L = d + 3 D
Generalmente el plegado se obtiene en dos etapas y se realiza con un ángulo de 180º.
1º- Colocando el material en el dispositivo anterior se efectúa el flexionamiento hasta un determinado ángulo.
2º-Se termina la operación con los platos de compresión hasta lograr un ángulo de 180º.
El ensayo dará resultado satisfactorio o, en otras palabras, el material será aceptado “ si no presenta sobre su parte estirada grietas o resquebrajaduras a simple vista.

ENSAYO DE PLEGADO
Se realiza sobre las probetas que fueron sometidas a flexión.
Para el calculo de la longitud de los rodillos de apoyo se utiliza la siguiente ecuación:
L = D + 3.d
Siendo “D” el diámetro del rodillo que aplica la carga y “d”, el diámetro de la probeta.
L = 76,2 mm + 3,13 mm = 115,2 mm
En la máquina de ensayo Baldwin (ver foto 3) se realizó la primera etapa de plegado hasta un ángulo superior a 90º y luego sometido a una prensa y se terminó en un plegado con forma de “U”. Al observar ambas probetas vemos que no presenta en su parte estirada grietas y tampoco resquebrajaduras a simple vista, o sea que ambos materiales (SAE 1015 y SAE 1045) son aptos para hacer plegados.


CHOQUE

En elementos sometidos a efectos exteriores instantáneos o variaciones bruscas de las cargas, las que pueden aparecer circunstancialmente, su falla se produce generalmente, al no aceptar deformaciones plásticas o por fragilidad, aun en aquellos metales considerados como dúctiles. En estos casos es conveniente analizar el comportamiento del material en experiencias de choque o impacto.
El ensayo de tracción estático nos da valores correctos de la ductilidad de un metal, no resulta preciso para determinar su grado de tenacidad o fragilidad, en condiciones variables de trabajo.
Los ensayos de choque determinan, pues, la fragilidad o capacidad de un material de absorber cargas instantáneas, por el trabajo necesario para introducir la fractura de la probeta de un solo choque, el que se refiere a la unidad de área, para obtener lo que se denomina resiliencia. Este nuevo concepto, tampoco nos ofrece una propiedad definida del material, sino que constituye un índice comparativo de su plasticidad, con respecto a las obtenidas en otros ensayos realizados en idénticas condiciones, por lo que se debe tener muy en cuenta los distintos factores que inciden sobre ella.
Resumiendo diremos que el objeto del ensayo de choque es el de comprobar si una maquina o estructura fallará por fragilidad bajo las condiciones que le impone su empleo, muy especialmente cuando las piezas experimentan concentración de tensiones, por cambios bruscos de sección, maquinados incorrectos, fileteados, etcétera, o bien verificar el correcto tratamiento térmico del material ensayado.


MÉTODO DE ENSAYO.
Los ensayos dinámicos de choque se realizan generalmente en máquinas denominadas péndulos o martillo pendulares, en las que se verifica el comportamiento de los materiales al ser golpeados por una masa conocida a la que se deja caer desde una altura determinada, realizándose la experiencia en la mayoría de los casos, de dos maneras distintas el método Izod y el método Charpy. En ambos casos la rotura se produce por flexionamiento de la probeta, por lo que se los denomina flexión por choque.

FLEXIÓN POR CHOQUE SOBRE BARRAS SIMPLEMENTE APOYADAS (MÉTODO CHARPY)
Con la finalidad de que el material esté actuando en las más severas condiciones, el método Charpy utiliza probetas ensayadas (estado triaxial de tensiones) y velocidades de deformación de 4,5 a 7m/s, entorno recomendado por las normas el de 5 a 5,5m/s.
Las probetas se colocan, como muestra la figura siguiente, simplemente apoyadas sobre la mesa de máquina y en forma tal que la entalladura se encuentra del lado opuesto al que va a recibir el impacto. En la misma figura se puede observar la correcta posición del material como así también la forma y dimensiones de los apoyos y de la pena del martillo pendular.


Las I.R.A.M aconsejan realizar el ensayo de choque por el método Charpy, con el empleo de probetas entalladas aprobadas por I.S.O (Internacional Standard Organización, ex I.S.A) que tienen las dimensiones indicadas en la figura.


La resiliencia al choque resulta, según este método, el trabajo gastado por unidad de sección transversal para romper al material de un solo golpe:
Resistencia =K = Ao/S (Kgf/cm² o Joule/cm²)
FLEXION POR CHOQUE DE BARRAS EMPOTRADAS (METODO IZOD)


En el método Izod la probeta se coloca en voladizo y en posición vertical, siendo asegurada por la mesa de apoyo de modo tal que la entalladura quede en el plano de las mordazas; en estas condiciones el extremo del martillo golpea al material a 22mm de las mismas, como indica la figura anterior, pudiendo realizarse más de un ensayo sobre la misma probeta, también puede construirse de sección circular, que presenta la ventaja de que permi te determinar la energía de rotura sobre caras o generatrices opuestas y a diferentes profundidades de la muestra.

MAQUINA DE ENSAYO - PENDULO SATEC

El péndulo Baldwin de la casa SATEC Systems (USA permite realizar ensayos de flexión por choque según los métodos de Charpy e Izod y tracción por choque, con dos posiciones del martillo para alcances de 325,4 Joule (33,81 Kgfm) o bien 135,6 Joule (13,825 Kgfm), según los métodos.
La apreciación de la lectura de energía absorbida por la probeta resulta de 2 Joule/div. y de 1Kgfm/div, según el sistema de medida.
El martillo se sujeta en la posición de ensayo, según la energía requerida, mediante una palanca que al destrabarse lo deja en libertar al impacto. La misma palanca permite accionar un sistema de freno a cinta para detener al golpeador una vez alcanzada la rotura.

El péndulo Baldwin de la casa SATEC Systems (USA permite realizar ensayos de flexión por choque según los métodos de Charpy e Izod y tracción por choque, con dos posiciones del martillo para alcances de 325,4 Joule (33,81 Kgfm) o bien 135,6 Joule (13,825 Kgfm), según los métodos.
La apreciación de la lectura de energía absorbida por la probeta resulta de 2 Joule/div. y de 1Kgfm/div, según el sistema de medida.
El martillo se sujeta en la posición de ensayo, según la energía requerida, mediante una palanca que al destrabarse lo deja en libertar al impacto. La misma palanca permite accionar un sistema de freno a cinta para detener al golpeador una vez alcanzada la rotura.
La energía de ensayo será la necesaria para producir la fractura del material en un solo golpe y quedará indicada, en el cuadrante del péndulo, por una aguja arrastrada por otra fija solidaria al eje del golpeador.
ENSAYO DE CHOQUE DE LAS PROBETAS EN ESTUDIO
En cada uno de los ensayos se obtendrá el valor de energía directamente de la máquina en Kgm (A), Para el método Charpy calcularemos la resilencia (K) que es el trabajo por unidad de sección transversal.
Luego entramos a la pagina
http://www.mailxmail.com/curso/excelencia/cienciamateriales/capitulo1.htm
E ingresamos a propiedades mecánicas de los materiales


Propiedades mecánicas: Describen la forma en que un material soporta fuerzas aplicadas, incluyendo fuerzas de tensión, compresión, impacto, cíclicas o de fatiga, o fuerzas a altas temperaturas. A continuación, se definen las que mencionaremos más adelante:
- Tenacidad: Es la propiedad que tienen ciertos materiales de soportar, sin deformarse ni romperse, los esfuerzos bruscos que se les apliquen.
- Elasticidad: Consiste en la capacidad de algunos materiales para recobrar su forma y dimensiones primitivas cuando cesa el esfuerzo que había determinado su deformación.
- Dureza: Es la resistencia que un material opone a la penetración.
- Fragilidad: Un material es frágil cuando se rompe fácilmente por la acción de un choque.
- Plasticidad: Aptitud de algunos materiales sólidos de adquirir deformaciones permanentes, bajo la acción de una presión o fuerza exterior, sin que se produzca rotura.
- Ductibilidad: Considerada una variante de la plasticidad, es la propiedad que poseen ciertos metales para poder estirarse en forma de hilos finos.
- Maleabilidad: Otra variante de la plasticidad, consiste en la posibilidad de transformar algunos metales en láminas delgadas.
Las anteriores propiedades mecánicas se valoran con exactitud mediante ensayos mecánicos:- Ensayo de tracción: Ofrece una idea aproximada de la tenacidad y elasticidad de un material.- Ensayos de dureza: Permiten conocer el grado de dureza del material.- Ensayos al choque: Su práctica permite conocer la fragilidad y tenacidad de un material.- Ensayos tecnológicos: Ponen de manifiesto las características de plasticidad que posee un material para proceder a su forja, doblado, embutido, etc.
Propiedades físicas: Dependen de la estructura y procesamiento del material. Describen características como color, conductividad eléctrica o térmica, magnetismo y comportamiento óptico, generalmente no se alteran por fuerza que actúan sobre el material. Pueden dividirse en : eléctricas, magnéticas y ópticas.
En capítulos posteriores estudiaremos por separado estos grupos y las definiciones de las distintas propiedades que los conforman.

jueves, 6 de marzo de 2008

PROCESO TIG/GTAW









Imagen de http://www.esab.com/

La soldadura GTAW (gas tugsten arc welding) o Soldadura TIG (tungsten inert gas) es también conocida como soldadura Heliarc, es un proceso en el que se usa un electrodo no consumible de tungsteno sólido, el electrodo, el arco y el área al rededor de la soldadura fundida son protegidas de la atmósfera por un escudo de gas inerte, si algún metal de aporte es necesario es agregado a la soldadura desde el frente del borde de la soldadura que se va formando.
La Soldadura TIG fue desarrollada inicialmente con el propósito de soldar metales anticorrosivos y otros metales difíciles de soldar, no obstante al pasar del tiempo, su aplicación se ha expandido incluyendo tanto soldaduras como revestimientos endurecedores (hardfacing) en prácticamente todos los metales usados comercialmente.

En cualquier tipo de proceso de soldadura la mejor soldadura, que se puede obtener, es aquella donde la soldadura y el metal base comparten las mismas propiedades químicas, metalúrgicas y físicas, para lograr esas condiciones la soldadura fundida debe estar protegida de la atmósfera durante la operación de la soldadura, de otra forma, el oxigeno y nitrógeno de la atmósfera se combinarían, literalmente, con el metal fundido resultando en una soldadura débil y con porosidad. En la soldadura TIG la zona de soldadura es resguardada de la atmósfera por un gas inerte que es alimentado a través de la antorcha, Argon y Helio pueden ser usados con éxito en este proceso, el Argon es principalmente utilizado por su gran versatilidad en la aplicación exitosa de una gran variedad de metales, además de su alto rendimiento permitiendo soldaduras con un bajo flujo para ejecutar al proceso. El Helio genera un arco mas caliente, permitiendo una elevación del voltaje en el arco del 50-60%. Este calor extra es útil especialmente cuando la soldadura es aplicada en secciones muy pesadas. La mezcla de estos dos gases es posible y se usa para aprovechar los beneficios de ambos, pero la selección del gas o mezcla de gases dependerá de los materiales a soldar. Dado que la atmósfera esta aislada 100% del área de soldadura y un control muy fino y preciso de la aplicación de calor, las soldaduras TIG, son más fuertes, más dúctiles y más resistentes a la corrosión que las soldaduras hechas con el proceso ordinario de arco manual (electrodo cubierto). Además del hecho de que no se necesita ningún fundente, hace este tipo de soldaduras aplicable a una amplia gama de diferentes procedimientos de unión de metales.
Es imposible que ocurra una corrosión debido a restos de fundente atrapados en la soldadura y los procedimientos de limpieza en la post-soldadura son eliminados, el proceso entero se ejecuta sin salpicaduras o chispas, la soldadura de fusión puede ser ejecutada en casi todos los metales usados industrialmente, incluyendo las aleaciones de Aluminio, Acero Inoxidable, aleaciones de Magnesio, Níquel y las aleaciones con base de Níquel, Cobre, Cobre-Silicón, Cobre-Níquel, Plata, Bronce fosforico, las aleaciones de acero de alto carbón y bajo carbón, Hierro Colado (cast iron) y otros. El proceso también es ampliamente conocido por su versatilidad para soldar materiales no similares y aplicar capas de endurecimiento de diferentes materiales al acero.
La fuente de poder para TIG puede ser AC o DC, sin embargo, algunas características sobresalientes obtenidas con cada tipo, hacen a cada tipo de corriente mejor adaptable para ciertas aplicaciones especificas.

www.drweld.com/gtaw